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ABSTRACT 
 
This paper is concerned with two sets of issues 

related to optimality in planning. The first is a proposal 
that design of decision support systems (DSS’s) for 
planning should aim to support the planner in generating a 
plan that is robust, i.e., has satisfactory performance even 
when reality differs from assumptions.  Such a plan would 
sacrifice optimality when reality is as assumed for 
reasonable performance over a larger range of situations.  
We discuss how this proposed refocus follows from the 
in-principle incompleteness, and common errorfulness, of 
domain models required to assess the performance of 
plans. The second issue related to optimality is the degree 
to which human judgment in planning is subject to a 
number of biases, all detracting from optimality. The 
Framing Bias arises from the Bounded Rationality of 
human cognition. The Transitivity Bias is a result of 
treating small and large differences in the criteria values 
as of equal importance.    Our analysis leads to design 
recommendations for DSS's that provide a measure of 
protection against these biases. The ideas are motivated 
and illustrated with Army planning examples. 

 
1. INTRODUCTION 

 
Decision support systems (DSS's) for planning 

generally support activities related to selecting an optimal 
plan, i.e., a plan that maximizes or minimizes, as 
appropriate, the performance criteria of interest.  We have 
reported (Josephson, et al 1998; Hillis, et al, 2003) on the 
development and use of an architecture for generating 
plans, simulating their performance on multiple, 
potentially contending criteria, selecting Pareto-optimal 
subsets, and, finally, applying trade-offs visually to 
narrow the final decision. Such simulations of course 
require domain models. In Army planning, such models 
might be of Blue and Red forces and the environment.  
With the increasing availability computer-based 
simulations, military Courses of Action (COA) planning 
can go beyond the doctrinally required three distinct 
COAs to accomplish the mission. In principle, planners 
can generate, simulate, compare and select from a large 
number of COAs, thus vastly increasing the chances for 
finding good COAs.   

 

Our focus in this paper is two sets of issues related to 
optimality in relation to DSS’s for planning.  The first is a 
proposal that DSS’s for planning should aim to support 
the planner in generating a plan that is robust, i.e., has 
satisfactory performance even when reality differs from 
assumptions.  Such a plan would sacrifice optimality 
when reality is as assumed in favor of reasonable 
performance over a larger range of situations.  The second 
issue is how DSS’s might be designed to overcome some 
of the biases in human decision-making that result from 
the structure of human cognition and lead to humans 
making sub-optimal choices.  

 
2. FROM OPTIMALITY TO ROBUSTNESS 

 
Any evaluation of choice alternatives can require use 

of models. Performance equations, simulations, etc., all 
make use of models of the relevant part of the world. This 
reliance on models is a property of all prediction, whether 
by computer programs or by thinking. 

 
There are two fundamental sources of uncertainty in 

prediction. The first is the fact the world is stochastic in 
nature, so at best we can only get a probability 
distribution of the values for the various criteria of 
interest. The second problem is more serious: models are 
in principle incomplete, and even in the dimensions that 
are included, they may be inaccurate to various degrees. 
These problems imply that when a COA is deemed to be 
superior to another COA based on criteria values 
predicted by model-based simulations, this decision could 
be wrong, and sometimes grievously so; the rejected COA 
might in fact be better.  

 
The inevitable gap between model and reality is not 

an issue for computer simulations alone; as Secretary 
Rumsfeld’s now-famous remark about “unknown 
unknowns” suggests, simulations that human minds 
perform are also subject to the same problem. However, 
humans often, though not always, have a sense of which 
of their models may be questionable, and. have evolved a 
set of heuristics by which they sometimes critique their 
models and simulations to test their robustness. The 
awareness of this gap between models and reality, and is 
implications for the quality of decisions, is not 
widespread in research on simulation-based decision 
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support. While the builder of a model might have a sense 
of the strengths and weaknesses of his models that may 
temper his reliance on the results of planning, today's 
computer simulations use models composed out of pieces 
built by different people, without the planner having 
access to the unarticulated intuition of the model builders. 

 
2.1. Uncertainty and Gaps in the Simulation Models 

 
Aren’t gaps and errors in the models are all simply 

kinds of uncertainty, to be handled by some kind of 
overarching probabilistic framework?  There are many 
methodological and practical issues in treating all model 
gaps and errors in a probabilistic framework.  The 
difference between uncertainty and gaps is that in the 
former, we know what we don’t know and have some 
idea of the structure of missing knowledge.  We model 
the uncertainty by a probability distribution over the 
structure.  In the case of gaps, we either aren’t aware of 
important aspects of reality, or have mistakenly decided 
that they are not relevant. How does one assign 
distributions over structures whose existence the modeler 
is unaware of and has no mathematical model for?  

 
In the case of probabilistically modeled uncertainty, 

the standard approach is to generate estimates of expected 
values for the various outcomes of interest by running 
Monte Carlo simulations. However, as Bankes (Bankes, 
2002, Lempert, et al, 2002) points out, difficult decisions 
about the future cannot be made on the basis of expected 
values for at least two reasons. The first is that if the 
outcome measures are correlated, then individual 
expected values will give a false picture of the future, but 
this can be taken care of by a more sophisticated stance 
towards computing the joint expected values. More 
seriously, however, expected value-based assessments fail 
to indicate both dangers and opportunities that may lie 
nearby, and possibilities for driving the future states to 
avoid dangers and exploit opportunities. In addition to 
developing such a sense of the decision landscape, what 
the decision maker (DM) needs is an understanding of 
how sensitive the outcomes are to the assumptions about 
the uncertainty, and correspondingly, how to reduce the 
sensitivity of the desired outcomes to the uncertainties  

 
Both of these issues – protecting against uncertainties 

in the models used and protecting against the gaps and 
errors in models – require a shift in point of view from 
optimality based on expected values to robustness. In 
order to realize the full potential of the vastly increased 
search spaces made possible by computer simulation, it is 
essential that the decision support system empower the 
planner to explore the plans for robustness of the selected 
plans.  

 
 
 

2.2. Robustness of COA’s 
 
There are two different but related robustness 

concepts: 
i. Alternatives A and B have approximately similar 

expected outcomes, but the one whose ratio of 
upside/downside is higher is the more robust one1.  

ii. Alternatives A and B have approximately similar 
expected outcomes, but the one whose outcomes are less 
sensitive to simulation assumptions and uncertainties is 
the more robust one. 

 
The robustness we have in mind to cope with model 

errors is type (ii) above. While everyone would agree, 
when pressed, that indeed simulations and reality differ, I 
don’t think people in the field are sensitized to the extent 
to which simulation-based decision comparisons can be 
problematic, and hence the decision finally chosen may 
be deeply flawed as a result of this mismatch between 
reality and simulation. While there is no absolute 
guarantee against this problem – as mentioned earlier, 
human thinking itself is based on world models and so 
limits of simulation apply to human thinking in general – 
nevertheless, decision support systems ought to empower 
the DM to evaluate how sensitive a decision alternative is 
with respect to the specific assumptions in the simulation. 
We regard development of such systems as the next major 
challenge for decision support. 

 
This issue is drawing attention in decision theory in 

general (Bankes, 2002, Lempert, et al, 2002). For 
example, in (Lempert, et al, 2002) the authors remark, 
“Reliance by decision makers on formal analytic 
methodologies can increase susceptibility to surprise as 
such methods commonly use available information to 
develop single-point forecasts or probability distributions 
of future events. In doing so, traditional analyses divert 
attention from information potentially important to 
understanding and planning for effects of surprise.” They 
use the term “deep uncertainty” to refer to the situation 
where the system model is uncertain. They propose an 
approach that they call robust adaptive planning (RAP), 
which involves creation of large ensembles of plausible 
future scenarios. They call a strategy robust if it 
“performs reasonably well, compared to the alternatives, 
over a wide range of plausible scenarios.” The idea is that, 
using a user-friendly interface, the DM looks for 
alternatives that are robust in this sense, rather than 
optimal in the traditional sense. 

 
There is no universal solution, or even attitude, to the 

problem of protecting oneself against surprises. 
According to historian Eric Bergerud, "Bismarck in 
particular never thought that events could be predicted 

                                                           
1 Due to Paul K. Davis (personal communication). 
 



 

 

with precision. When a policy was pursued a range of 
outcomes could be expected. The trick was to develop 
policy where the minimum outcome (today we might call 
it a worst case scenario) was acceptable. If a triumph 
ensued, great. If it was something in between, don't die of 
surprise." This assumes that the goal is to minimize the 
worst case scenario. Not all missions can be approached 
this way. There are times when one might wish maximize 
the best, taking chances of bad outcomes. The decision 
support system has to support exploring the space of 
alternatives under a variety of attitudes, conservative or 
risk-taking, as the commander deems appropriate. 

 
2.3. Exploring Robustness of Plans 

 
A model consists of a set of assumptions of the 

relevant part of reality.  As mentioned, robustness of a 
plan (or decision, more generally) is a measure of the 
sensitivity of a plan to the various assumptions and to any 
erroneous or missing relevant knowledge.  In principle, a 
plan cannot be uniformly robust with respect to all its 
assumptions, let alone with respect to knowledge that it 
doesn’t contain.  If nothing about the world is as assumed, 
well, the planner is out of luck.  So in practice, robustness 
exploration should be oriented towards making use of 
islands of relative certainty to critique and protect against 
less certain parts of models. Further, techniques for 
testing for robustness with respect to assumptions 
explicitly incorporated in the model are different from 
those to test for robustness against missing knowledge. 

 
First, the planner might explore the sensitivity of 

relevant outcomes to specific assumptions whose 
reliability he has concerns about. For example, it would 
be good to know if the likelihood of taking the objective 
changes much or little for a given COA whether or not it 
rains, even though the actual uncertainty about the rain 
might be quite large.  Sensitivity analyses of this type are 
common.  Such a sensitivity analysis may be numerical 
parametric, as in: “How much will the performance 
change if parameter p in the model is off by 10%?”  It can 
be qualitative & structural as in: “In my model, I am 
assuming that the mullahs would rather give up their 
support of the Sadr faction than risk extending US 
presence closer to their border. How does the likelihood 
of a deal change if I give up this assumption?”  Such 
analyses call for varying the specific model assumptions, 
simulating over contingencies of each model, and getting 
a statistical estimate of the range of variability of the 
performance.   In (Chandrasekaran & Goldman, 2006) we 
report on conducting this kind of exploration in planning, 
using a visual interface that makes relations between 
variables quite salient. 

 
Given that an outcome is sensitive to an assumption, 

the planner might look to see if there are additional 
elements that impact the sensitivity. In the rain example, 

the DM might be able to determine that while the 
probability of achieving the objective varies considerably 
depending on whether and how much it rains, if subgoal S 
is achieved, then rain doesn’t affect the final outcome 
very much, and that increasing a certain COA parameter 
to a specific value increases the chances of achieving S 
independent of rain. What the planner has done in this 
case is an example of identifying the “dangers and 
opportunities” mentioned earlier and how they can be 
used to make the plan more robust.  As another example, 
let us consider a large uncertainty in enemy position. The 
DM might explore how to make a COA robust with 
respect to this uncertainty. He might see if he can design a 
COA such that the initial stages of the COA are largely 
oriented towards getting more information about the 
location, and based on the information, later stages of the 
COA can be assigned appropriate parameters. Again, the 
goal is less to simply obtain estimated values for the 
outcomes than to explore the COA space to take 
advantage of opportunities. 

 
Second, the planner might try to identify assumptions 

whose validity is key to achieving the desired 
performance.  This is a bit harder than the goal we just 
discussed, since we are not examining the sensitivity of a 
specific assumption, but trying to discover the 
assumptions, among all assumptions in the model, that 
may be key to performance. Example: “In the COA for 
disrupting enemy communication network, what are the 
variables highly correlated with the outcome variable, and 
which model assumptions do they especially depend on?” 
In this case, once we identify the assumptions, we can 
devote additional empirical resources to verify or test the 
assumptions for completeness and accuracy.  A visual 
interface such as in (Josephson, et al, 1998) may be useful 
for this as shown in (Chandrasekaran & Goldman, 2006).   

 
A variation on identifying key assumptions is to 

perform reverse simulations from desired results so as to 
identify ranges for the values of key variables that have a 
bearing on the outcomes of interest.  The planner might 
then be able to identify model assumptions that relate to 
these variables.  For example, an analysis might indicate 
that capture of an asset cannot be guaranteed if a certain 
class of events happens, e.g., ambush at a certain location.  
This in turn could enable the planner to identify the model 
assumption, “No enemy presence in area A,” as crucial to 
whether or not an ambush is possible.  Notice that this is 
not a case where the planner was especially concerned 
about the reliability of this assumption in the model.  It is 
that this assumption has been identified as worth double-
checking (in comparison with other assumptions) because 
it has been identified as key to the performance. 

 
Highest in the level of difficulty is exploring the 

existence of relevant model gaps – missing knowledge, 
including unknown unknowns.  Ultimately, there is no 



 

 

real guarantee that we would be able to identify all the 
relevant gaps in the models and fix them. But the situation 
is not hopeless. If we start with the assumption that the 
model we have is generally good, but potentially missing 
important components, we can adopt the strategy of 
identifying regions of certainty and completeness which 
might then be used to suggest areas of the model of whose 
completeness we are less confident. Several strategies 
might be considered. 

 
First, certain features or behaviors might suggest the 

need for additional domain knowledge of specific kinds. 
If taking a specific enemy asset turns out to be crucial in 
achieving plan goals, additional mental and modeling 
resources might be devoted to buttressing the model with 
additional knowledge about enemy capacities to defend 
the asset, or weaknesses in Blue capabilities to take the 
asset. Second, a reverse simulation – from the goal 
backwards – and additional reasoning might help.  In the 
situation where the final approach to the objective is 
identified, the planner might realize that his model has 
only crude terrain information, quite insufficient to 
confidently rule out the prospect of an ambush. This kind 
of exploration is quite focused; our search for potentially 
relevant missing knowledge is driven by evidence that it 
is especially related to the outcome.  Third, odd or 
counterintuitive behaviors in the simulation might trigger 
search not only for incorrect, but missing, knowledge. 

 
 An important consideration is that we are not 

abstractly interested in critiquing or improving the 
simulation model, but with respect to evaluating one or a 
small set of COAs, and in response to specific observed 
behaviors of the simulation. This is likely to focus the 
need for additional investment in model-building to 
specific questions, reducing the amount of work involved. 

 
2.4. Increasing the Robustness of plans 

 
Some of the ways in which a plan robustness can be 

increased have been mentioned earlier in the context of 
robustness exploration, but it is still useful to bring them 
together. 

 
If robustness analysis indicates sensitivity to certain 

assumptions or certain simulation states, the planner has 
several options. In the case of the assumptions, time and 
resources permitting, verification efforts can be 
selectively focused on the specific assumptions.  An 
example q a key simulation state is the discovery that one 
nay to reach the objective is along a specific avenue of 
approach.  Because of its importance, verification ant 
modeling efforts can be focused on knowledge related to 
this avenue of approach.  The analysis has moved the 
epistemic state of the planner from one of anything and 
everything could be faulty, which makes it impossible to 

practically verify any component of his models, to one of 
selectivity in critiquing models. 

 
The planner might also modify the plan in various 

ways. First, he can try to reduce the sensitivity, e.g., by 
adding components that restore performance in case 
reality is different from the assumption.  Second, he can 
organize the plan so that some of the initial steps have the 
twin goal of achieving some of the plan goals as well 
provide information about reality, and later steps in the 
plan take advantage of the information gained.   For 
example, a network disruption plan might have 
components that attempt to destroy some enemy assets, 
but the results also give information about enemy 
defenses. Branches in the plan might be taken depending 
upon this information: “We are assuming enemy strength 
is weak here, but if it turns out wrong, we can reinforce 
from here.”  Finally, the plan might be buttressed with 
elements that will help achieve goals even in the absence 
of relevant knowledge about some aspects of reality.  One 
way to protect a plan against missing weather models is to 
have components in the plan that ensure success over a 
variety of weathers. 

 
Based on insights about events on edge of phase 

transitions, plans may be modified to cause or avoid  key 
events identified to be critically related to outcomes.  
Example: From an analysis of a simulation, we find that 
when variable v takes values above say v0, an outcome 
variable of interest radically changes in value in an 
unsatisfactory direction. This then can be the basis for 
explicitly examining the domain to see which of the 
phenomena in the domain might have the effect of 
moving v beyond the critical value and identifying ways 
in which v can be kept within the desirable range. 

 
Notice that many of these strategies are in fact 

heuristics used in human planning on an everyday basis. 
We usually have a sense of trust or lack of trust in our 
models of the world that we use in our mental simulation, 
and adopt strategies of early least commitment, 
information gathering, consistency and reasonable values 
checking, and so on.  However, the challenge for DSS’s is 
to provide computational support to perform such 
activities. We have outlined above some available 
approaches, but much remains to be done before a 
framework is available that integrates multiple types of 
explorations with plan modification. 

 
3. PROTECTING DECISION MAKER FROM 

COGNITIVE BIASES 
 
We now shift our focus to how DSS’s may be 

designed to protect a DM against certain biases that seem 
inherent to human cognition and that often can result in 
the DM making suboptimal choices.  We start by placing 



 

 

the decision-making problem in a larger naturalistic 
context. 

 
3. 1.  Decision- Making in the Wild  

 
It is not surprising that investigations of biases in 

human cognition use formally stated reasoning problems 
for which there are clear rational answers. However, 
everyday decision making – what one might call decision-
making in the wild (DMITW) – involves situations that 
are pre-formal: the DM has first to convert the situation 
into a problem statement. A man wins $20,000 in a 
lottery. What should he do: Should he pay off some of his 
loans? Buy a new car? Repair his house?  Perhaps 
something that hasn’t occurred to him yet, but even more 
essential? Once the alternatives are all laid out, and for 
each alternative, either a utility (u) is specified, or criteria 
of interest identified and evaluated, the formal problem 
can be solved as utility maximization or a Pareto-optimal 
solution for a multi-criterial decision problem.  

 
While mistakes made in solving the formal version 

are interesting, rarely is the “rationality” in how the DM 
formulates the problem is discussed.  Some readers might 
remember the old TV ad in which a man makes the choice 
of something to drink, starts drinking it, sees someone 
drinking V8, and hits his forehead in mock self-blame, “I 
could have had a V8.” The implication was that he had 
known about V8. His brain failed him; it missed 
generating the choice alternative V8.  If he had not known 
about V8, it would not be a cognitive failure.  A similar 
cognitive failure would occur in the case of the lottery 
winner if he failed to generate an important choice 
alternative, or mis-assessed the value of an alternative by 
forgetting to consider a way it could be useful.  A 
cognition that fails to bring to the fore relevant 
information that is available is not firing on all cylinders; 
it is being less than optimal.  As a result, the decision 
made is less than optimal.    

 
Conversely, a decision that might appear not quite 

rational when viewed narrowly within the formal 
statement of a problem might actually make sense if 
viewed in the larger context of the work done by 
cognition. Let us keep in mind the following anecdote 
about Philosopher Sidney Morgenbesser for later 
discussion. Once, after finishing dinner, Morgenbesser 
decided to order dessert.  The waitress told him he had 
two choices: apple pie and blueberry pie. He ordered the 
apple pie.  After a few minutes the waitress returned and 
said that they also had cherry pie, at which point 
Morgenbesser said, “In that case I’ll have the blueberry 
pie.”  This was supposedly a joke, but might the above 
behavior actually be rational?   

 
These issues turn the focus on the cognitive 

architecture. Once we understand the limitations of 

cognition and their origin, we might seek ways in which 
DSS’s might help the DM avoid, or mitigate, these 
limitations.  So-called “biases” are a window into the 
workings of the architecture. Let’s consider two, Framing 
and Transitivity biases. 

 
3.2.  Framing Bias 

 
Consider the following experiment (De Martino, et 

al, 2006). Subjects in a college campus received a 
message indicating that they would initially receive £50.  
Next, they had to choose between a "sure" option and a 
"gamble" option. The "sure" option was presented in two 
different ways, or "frames" to different groups of subjects: 
either "keep £20" (Gain frame) or "lose £30" (Loss 
frame).  The "gamble" option was identical in both frames 
and presented as a pie chart depicting the probability of 
winning.  In the experiments, the subjects who were 
presented the “sure” option as a Gain frame chose it over 
“gambling” at a statistically significant higher rate than 
those who were presented the “sure” option as a Loss 
frame, though of course both frames had identical 
payoffs, and the calculations involved were trivial.  How 
a choice was framed –described – made more difference 
that we might expect. 

 
3.3 Architecture of Cognition and Problem Solving 

 
Cognition can be analyzed architecturally in many 

layers. We focus on the problem solving (PS) level of 
analysis, such as embodied in Soar (Laird, et al, 1987).  In 
this account, the agent has goals in his working memory 
(WM). The presence of goals causes relevant knowledge 
to be retrieved from long-term memory (LTM) and 
brought to WM.  This knowledge helps set up a problem 
space, which may result in subgoals.  Some subgoals may 
fail, in which case other subgoals are pursued. This 
recursive process goes on, until all the subgoals are 
achieved, and the main goal is as well.  The net effect of 
all this is that problem solving involves search in problem 
spaces.  The search is open-ended, i.e., the size of the 
search space cannot be pre-specified.  It is also 
opportunistic, being the result of the descriptions of the 
specific goals, specific world states, and specific pieces of 
knowledge. Successful searches are cached in LTM for 
reuse. Heuristics and pre-compiled solutions can reduce 
search, which is why most every day problems are solved 
rapidly.  One specific kind of heuristic is rapid selection 
between alternatives based on their types. Additionally, 
the architecture may have built-in preferences for certain 
kinds of alternatives over others. 

 
In the example of a person winning a sum of money 

in the lottery, both the generation of alternatives and their 
assessments will typically involve such searches.  A 
subgoal of “keep spouse happy” might bring to WM from 
LTM recent episodes of disharmony, which over a 



 

 

sequence of additional retrievals might eventually suggest 
remodeling the kitchen as a possible choice to spend the 
money on.  Evaluating the relative merit of one alternative 
over another, e.g., remodeling kitchen vs buying a new 
car, would typically involve a mental simulation of the 
consequences of each choice, which again requires 
repeated access to LTM.  Limitations of time, knowledge 
and memory access all in various ways contribute to the 
output of these processes not being as complete or 
accurate as they could be, leading to the concept of the 
Bounded Rationality of the human as a cognitive agent 
(Simon, 1972).  Which choice is rational may be obvious 
once the alternatives are generated and multi-criterially 
evaluated, but as mentioned, that doesn’t speak to the 
rationality of the generation and evaluation of the 
alternatives themselves. 

 
Let us look a bit more closely at two steps in the 

process, retrieval from LTM, and choosing between 
alternatives in the state space.  LTM is accessed to solve 
subgoals – relevant content is brought to WM to setup 
problem spaces. The associative memory retrieval process 
works by using the contents of WM as indexes to identify 
relevant LTM elements.  The indexes are provided by the 
terms in the description in WM of the states, goals and 
subgoals.   

 
In selecting between alternatives, the architecture has 

to assign preference values to the alternatives. LTM may 
directly provide them either as previously compiled 
values or as heuristics, or the architecture may set up 
computing preferences as a subgoal. In either case, it is 
simply another instance of solving for a subgoal, in a 
manner described in the previous paragraph.  However, 
under certain conditions, the architecture may use hard-
wired heuristic preferences; this does not require 
accessing LTM. It seems a plausible hypothesis that our 
evolutionary ancestors derived some advantage from a 
hard-wired choice selection mechanism that, under 
requirements of rapid decision making, preferred 
alternatives that evoked gain over those that evoked loss, 
and alternatives that evoked safety over those that evoked 
danger.  

 
A feature that is common to the operation of both of 

these mechanisms, viz., retrieval from LTM and selection 
among alternatives by hard-wired preferences, is that they 
depend on the descriptive language used, i.e., the terms in 
which the relevant items in WM are couched.  The same 
state or subgoal described using different terms, but in a 
logically equivalent way, may retrieve different elements 
of LTM. The hard-wired preference mechanism, 
similarly, responds to the terms, such as loss or gain, in 
the description, not to the totality of the meanings, of the 
alternatives.   

 
 

3.4. Architectural Explanation: The Framing Bias 
 
  We can now look at the Framing Bias example in 

the light of the architecture and its properties. “Loss of 
£20,” and “Gain of £30” may be equivalent in the 
experimental setup, but the architectural hard-wired 
preference mechanism has only the terms “loss” and 
“gain” to go by.   The subjects had limited time, and the 
hardwired mechanism left its mark in the experimental 
results.  

 
3.5. Architectural Explanation: Rationality of the 

Morgenbesser choice 
 
Consider this hypothetical account of Morgenbesser’s 

behavior. When he was told of apple and blueberry pies 
as choices, the choices and his dining goals evoked two 
criteria: taste and calorie content.  Using additional 
knowledge and access to his own preferences, suppose he 
found apple pie to be the Pareto-optimal choice, which of 
course he then ordered.  When the waitress came back 
with cherry pie as a choice, suppose that this new term 
evoked an LTM element about pesticide use in cherry 
farming.  Morgenbesser now decides to use pesticide use 
as a third criterion, and in this new formulation of the 
decision problem – three criteria -- blueberry pie becomes 
Pareto-optimal over apple and cherry pies.  In this 
hypothetical account, Morgenbesser was not joking, but 
making a rational decision. 

 
As this hypothetical shows, the same feature of the 

architecture that played a role in the generation of the 
Framing Bias also can potentially increase the overall 
rationality of DMITW.  This is also a caution that issues 
of rationality in DM are more complex than laboratory 
studies of formal reasoning problems might indicate.   

 
3.6.  Transitivity and Other Biases 

 
Another bias that is relevant is what has been called 

Arrow’s Paradox in theories of voting, and shows up as a 
kind of transitivity failure in individual decision-making. 
A group of voters may prefer candidate A to B, B to C, 
but C to A, when the choices are presented in pairs. The 
corresponding example in individual decision-making is 
when the DM is given pairs of decision alternative’s, 
(A,B),  (B,C) and (C, A), and prefers A to B, B to C and 
C to A.   

 
Why does this kind of ostensibly irrational behavior 

arise?  Looking at the voting example, think of each voter 
as a criterion in a 3-choice, n-criterion (where n is the 
number of voters) MCDM problem. Suppose each voter is 
asked to distribute 1 unit of preference over the three 
candidates, each allocation representing a degree of liking 
of each candidate. For example, if V1, V2 and V3 are 
voters, suppose V1 assigns 0.5, 0.3 and 0.2, V2 assigns 0.3, 



 

 

0.36 and 0.34, and V3 assigns 0.3, 0.2 and 0.5, to A, B and 
C respectively.  Straight voting will exhibit Arrow’s 
Paradox, but choosing the candidate with the highest total 
allocation by the voters does not.   Viewing each voter as 
a criterion in an MCDM problem, the Pareto-optimal 
decision rule will not exhibit a transitivity error. However, 
more than one candidate may end up in the Pareto-
optimal set.  In the specific example above, all three 
chairs will be Pareto-optimal. The DM will need to call 
upon additional trade-off preferences to select between 
them.   

 
3. 7.  Decision Support Systems And Framing Effects  
 

Retracing what we said, real word problems don’t 
come fully formalized, and DM’s often have to engage in 
open-ended problem solving to figure out the goals, the 
alternatives, the criteria to evaluate the alternates, and the 
criteria values themselves.  This activity requires repeated 
access to information in LTM, and may also make use of 
architecturally hard-wired preference mechanisms.  
Rationality in this process consists of making sure that the 
DM makes full use of all the relevant knowledge, unlike 
the person who wished he had chosen V8.  If our analysis 
is correct, framing – how goals, states, criteria are 
described – has an impact on the decision process because 
retrieval of knowledge from LTM and the architectural 
preference mechanisms depend on the terms in the 
description in WM.  Thus, framing may reduce the 
rationality by failure to bring to WM all the relevant 
knowledge the agent has. 

 
Consider a COA planning problem, which the 

planner wishes to view as a multi-criterial decision-
making (MCDM) problem.  To illustrate the issue of 
framing, let us assume that the problem has been 
formalized, i.e., the COA alternatives, criteria and their 
values have been specified. The DSS can help by 
generating the Pareto-optimal subset. Narrowing the 
choice calls for injection of additional information by the 
DM.  A common form of additional information is trade-
off preferences. For example, he may notice that while 
alternative A1 scores higher on criterion C1, alternative A2 
scores higher on criterion C2, but A2’s C1 value is only 
5% smaller, while its C2 value is 20% higher.  He may 
decide that on balance, A2 is really the better choice.  This 
decision is not simply one of balancing 5% against 20%, 
since the criteria may be quite incommensurable.  Rather, 
he applies additional domain knowledge that convinces 
him that the utility of A2 will be higher than that of A1.  
Decision theory assumes the existence of a differential 
utility to explain the ability of a DM to make a trade–off, 
but the processes a human DM engages in to access or 
estimate this differential utility have not been much 
discussed. 

 

I suggested earlier in the discussion on the example 
problem of how to spend a modest lottery win that both 
generating relevant criteria and coming up with relative 
scores on these criteria for various alternatives often 
requires a kind of mental simulation of the consequence 
of a choice.   The effectiveness of this simulation, like 
that of all problem-solving, depends on relevant 
knowledge being retrieved to set up the problem space 
and evaluate the states.   

 
Suppose one of the criteria in a COA planning task is  

“fuel consumption during the operation,”  and suppose 
that a DM is trying to apply trade-off preferences between 
two Pareto-optimal COA’s.  If COA1 is better than COA2 
by 10% on the fuel consumption criterion, and COA2 is 
better than COA1 on the criterion, “time to complete 
mission,” the DM, by thinking through various scenarios, 
might conclude that COA2 is better for his purposes.  
Suppose now that the same fuel criterion is framed 
differently, “fuel remaining for future mission.”  The 
latter can be obtained quite readily from the former, so it 
is logically equivalent.  However, the process of mental 
simulation might be rather different in this case.  The DM 
might now be reminded of a possible mission 
immediately following the current one, something that 
had not explicitly been part of the specifications for the 
current mission planning task.  Now, his simulation of the 
consequences of the two alternative COA’s yields 
different results.  The relative unimportance of a 10% 
difference in fuel consumption is replaced by the 
significant potential advantage of a 10% additional fuel 
for the next mission. Even though future missions were 
not explicitly part of the formal statement of the current 
COA problem, the re-framing of the criterion has elicited 
new knowledge, which in turn has made available to the 
commander an additional comparison criterion, readiness 
for next day’s mission.    
 

The lesson is not that one or the other framing must 
be chosen – perhaps the designer should consider 
including both framings, if then is reason to believe that 
each will help the DM invoke different relevant 
knowledge. In general, the DSS should encourage the DM 
to bring to bear as much of his potentially relevant 
knowledge as possible. 

 
4. CONCLUDING REMARKS 

 
This paper has focused on two issues related to 

optimality in planning; and their implications for the 
design of DSS’s.  The first was that the real goal of 
planning should be to come up with plans that are robust 
over a variety of situations rather than optimal with 
respect to the assumptions embedded in the models used.  
The second focused on how the structure of human 
cognition can explain the Framing Effect that has been 
observed in human decision-making and that often leads 



 

 

to sub-optimal decisions. Additionally, we noted that 
much of the discussion of optimality has been in the 
context of formalized decision situations.  However, 
every day human decision making, what we called 
“decision-making in the wild,” is devoted to formulating 
– in some ways formalizing – the decision task, i.e. to 
getting to a place where the traditional notion of 
rationality or optimality can even be applied.  While it is 
useful for DSS’s to help a DM to arrive at an optimal 
solution for a well-formulated problem, the deeper 
challenge is to help the DM formulate the problem by 
bringing to bear his knowledge, understand the decision 
space, and explore the robustness of his solutions by 
changing the assumptions.    

 
DSS’s should exploit the strengths of the human 

cognitive architecture, and mitigate its weaknesses. Its 
strengths are a large, potentially open-ended stove of 
knowledge, including knowledge about accessing external 
knowledge; and an ability to bring relevant knowledge, if 
very slowly, to bear on the task at hand.  Its weaknesses 
are that it is slow, its evolutionarily hard-wired 
architectural constraints can cause biases, as can the fact 
that access to knowledge depends on cues in descriptions 
& may miss relevant knowledge; and has other memory 
limitations, including a low capacity working memory. 
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